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AXISYMMETRIC AND NON-AXISYMMETRIC VIBRATION MODES OF A
COMPLETE SPHERICAL SHEL L

Thomas A. Duffey, Jason E . Pepin, Amy N. Robertson, and Michael L . Steinzig

ABSTRACT

Numerous theoretical investigations on the natural frequencies for complete spherical
shells have been reported over the past four decades . However, attempts at correlating
the theoretical results with either experimental or simulated results (both for
axisymmetric and non-axisymmetric modes of vibration) are almost completely lacking .
In this paper, natural frequencies and mode shapes obtained from axisymmetric and non-
axisymmetric theories of vibration of complete spherical shells and from Finite Element
computer simulations of the vibrations, with and without geometrical imperfections, are
presented. Modal tests reported elsewhere on commercially available, thin spherical
marine floats (with imperfections) are utilized as a basis for comparison of frequencies to
both the theoretical and numerical results . In addition, comparisons with `whole field'
measurements on one of the imperfect shells using dynamic holography are presented .
Because of the imperfections present, 'splitting' of frequencies of non-axisymmetric
modes is anticipated . Correlations of recorded natural frequencies of the spherical shells
with earlier theoretical results and with finite element simulations for the first few modes
are good, and the presence of the frequency splitting phenomenon is demonstrated .

1 . INTRODUCTION

The modal response of complete spherical shells has been investigated with progressively
higher-order theories since the 1960's . While the emphasis has been on the axisymmetric
modes of vibration [1-3], theoretical investigations regarding the non-axisymmetric
modes have been reported as well [4-6] . The axisymmetric modes are independent of the
circumferential coordinate, whereas the non-axisymmetric modes depend upon both
meridional and circumferential coordinates, but are degenerate for a complete, perfect
spherical shell .

The first to examine axisymmetric modes of a complete spherical shell were Baker [1]
and Kalnins [2], who used membrane and elementary bending theories, respectively .
These axisymmetric modes are independent of the circumferential angle, 0 (See Fig . 1) .
Modes of vibration are expressed in terms of Legendre Polynomials of integer indices, n .
For each value of n >_ 2, there are two branches, i .e ., two separate, but similar, mode
shapes, and two distinct frequencies (for n = 0, there is only one real root, corresponding
to the 'fundamental' membrane or 'breathing' mode) . The frequency spectrum therefore
consists of two infinite sets of modes . Kalnins [2] labeled one branch as flexural and the
other as membrane, the distinction made on the basis of the comparison of strain energies
due to bending and stretching of each mode . Wilkinson [3] subsequently investigated the
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axisymmetric modes of a complete spherical shell, but included the effects of transverse
shear and rotary inertia as well . His investigation resulted in the identification of a third,
higher modal branch, although the two lower branches were nominally identical to those
of Kalnins [2] .

Silbiger [4] presents the first discussion of the presence of nonaxisymmetric modes of
spherical shells . These nonaxisymmetric modes depend upon both 0 and ~ (See Fig . 1) .
Silbiger [4] claims that nonaxisymmetric modes for a complete spherical shell do exist
and that they are degenerate, meaning that the nonaxisymmetric frequencies are identical
to corresponding axisymmetric modes. Silbiger [4] attributes this to the spherical
symmetry of the shell . He argues that the axisymmetric modes are defined with respect
to a specific set of axes . Due to the symmetry of the shell, however, it can vibrate in
similar modes with a different axis orientation . For a given set of 'identical' modes
(differing only in orientation), the modes will each have the same natural frequency .
These axisymmetric modes of identical natural frequency can be superimposed to obtain
new non-axisymmetric modes that have the same natural frequency as the corresponding
axisymmetric mode, but which are not symmetric with respect to any axis . Silbiger [4]
goes on to state that, corresponding to each natural frequency, there exist 2n+1 linearly
independent modes. All other modes (at a given frequency) are linear combinations of
these modes. However, he observes that when a deviation from spherical symmetry
occurs, this degeneracy disappears and the modes will split into 2n+1 distinct
frequencies .

Niordson [5] rederived the equations for bending vibrations of a spherical shell in a
somewhat different form. He examined the non-axisymmetric modes as well, concluding
that there exist n+1 (not 2n+1 as reported by Silbiger) modes at each mode number, n, on
each branch . Observations in [5] made regarding non-axisymmetric modes (e .g., the fact
that they exhibit the frequency degeneracy identified by Silbiger [4]) were similar, except
for the number of independent modes anticipated . In a later paper, Niordson [6] similarly
indicates that when spherical symmetry of a complete spherical shell is lost, the
previously degenerate frequencies form into bands, with the bandwidth related to the
degree of spherical asymmetry .

With the exception of Baker's [1] work on spherical shells (using membrane theory) and
some very limited comparisons by Duffey and Romero [7] of massive nozzles, the
authors are unaware of any attempts at correlation of theoretical predictions of natural
frequencies of complete spherical shells with experimental data . Moreover, the splitting
of the degenerate non-axisymmetric modes of vibration in the case of perturbations from
ideal spherical shell geometry has only been postulated . It has not been demonstrated
experimentally for a free, complete spherical shell . A detailed literature review and
interpretation of axisymmetric and non-axisymmetric vibrations for both perfect and
imperfect spherical shells is presented in [7] . Splitting of degenerate modal frequencies
has recently been exploited in [8] for characterizing non-uniformities in precision
symmetric parts and has been applied to hemispherical shells .
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In this paper, a series of modal tests reported in [10] on commercially available, stainless
steel, spherically shaped, thin-wall marine floats are utilized as a basis for comparison of
frequencies to both theoretical and numerically calculated frequencies . In addition,
comparisons with PRISM (Precision Real-Time Instrument for Surface Measurement
[11]) `whole field' measurements on one of the spherical shells using dynamic
holography are presented . The floats are complete spherical shells, but contain
imperfections [9]. Natural frequencies obtained are compared with axisymmetric and
non-axisymmetric theories of vibration of complete spherical shells . In addition,
comparisons are made to finite element modal calculations that include measured
variations in both radius and shell thickness .

Correlations of averaged natural frequencies for the entire set of spherical shells with
earlier axisymmetric theoretical results [5] for the first few modes are presented . Using,
the PRISM Method for one particular shell and accelerometer measurements recorded
earlier on the same shell, the presence of the frequency splitting phenomenon associatedi
with the non-axisymmetric modes is investigated for the imperfect spherical shell .
Thickness and radius profile measurements as a function of the meridional coordinate are,
then taken from the tested spherical shell and used as input in the Finite Element Model
for further investigation of frequency splitting .

W

V

F igure 1 . Complete Spherical She l l

2. AXISYMMETRIC MODES OF VIBRATION

2 .1 Theoretical Frequencies and Mode Shapes

The modal frequencies for a thin spherical shell are given by
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where f. is the frequency in Hertz, R is the mid-surface radius, ,u is the density, E is the

modulus of elasticity, and v is the Poisson's ratio . The parameter Ai in Equation 1 takes

on a variety of forms depending upon the level of the shell theory utilized . Fora higher
order shell theory, including the effects of bending (these formulae include tr ansverse
shear and rotary ine rtia as well), Wilkinson [3] repo rts the natural frequencies of the
nontorsional axisymmetric modes as given by the roots of the following cubic equation in
XZ :

aab -Qa,4 + s2.Z - y = o

where

a = 2kk, (k,k, - c,c,) l(1- v)

,6 = (k,k, - crc,) [r + 4 ks (1 + v)/(1- v) ]

+k, [~(k, + CO + Cr + k, + 2ks.(k, + k,)(rl(1- v ) - 1)]

S=(~c, +cr)(1+ v)(2-r)+ k,[r(r-3 - v)+2(1+ v)

X((r -2)k, + 1)]+ k, [2kr(r + 4 v)1(1- v) + r(r + ~+ v) + (1 + 3 v)(~ - 2k) - (1- v) ]

and

y = (r -2)[r(r - 2) + 2ks(1 + v)(r -1 + v) + (1- v2)g + 1) ]

The following definitions apply :

(2)
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h =shell thickness
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The above equations were evaluated for the following nominal or averaged geometrical
and material properties of the thin, spherical shells discussed above . The averaging
process facilitates comparison with axisymmetric modes, as the data are similarly
averaged .

Poisson's Ratio, v= 0 .28
Radius, R = 4.4688 in
Elastic Modulus, E = 28 .0 X 106 psi
Mass Density, ,u = 0 .000751 lbf-sect/in4
Thickness, h = 0 .0625 in

A plot of natural frequencies for the higher order theory given in Eqn . 1 is shown in Fig .
2. Equation 1 also includes the effects of transverse shear and rotary inertia, which
introduces a much higher branch (not shown in Fig . 2), which is of little interest in the
present study . The floats are well into the "thin shell" region, with a radius-to-thickness
ratio of 71 .5 . For thicker shells, e .g., the study in [7], the differences between the
"bending" branches for the membrane and higher order theories become more
pronounced. Inspection of Fig. 2 reveals that there is a crossover point, where
frequencies on the lower branch for higher model index, n, are larger than upper branch
frequencies for small n. It is interesting to note that n = 0 on the membrane branch is the
so-called "fundamental", pure breathing, mode of the spherical vessel . Therefore, there
are frequencies, composed largely of bending, that lie below the "fundamental" mode .
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NATURAL FREQUENCIES OF A COMPLETE
SPHERICAL SHELL USING HIGHER ORDER

THEORY
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Figure 2. Float Frequencies using Higher Order Theory

As an illustration of the axisymmetric mode shapes, the first three (n = 2, 3, and 4) modes
on the lower branch are shown in Figure 3 . Torsional modes are not expected to be
significantly excited during testing, and are not considered in this study .

. ~ .a.

tYxkt

N=2 N=3 N=4

Figure 3 : First Three Lower Branch Axisymmetric Modes of a Complete Spherical
Shell
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2.2 Comparison of Axisymmetric Modal Frequencies with Experiment s

Robertson, et al [10] performed a series of modal experiments on a set of hollow, almost
spherical marine floats . From the recorded FRF data, an Eigen-system Realization
Algorithm (ERA) Fit was performed to determine the natural frequencies of the first four
modes . Testing was performed on multiple floats . The modal values listed in Table 1
correspond to the "unit-to-unit" averaged modal frequency values reported in [10] .

This averaging process effectively cancels out modal splitting and associated non-
axisymmetric modes . Results can therefore be directly compared with axisymmetric
theoretical results, as shown in Table 1 . It can be seen that agreement between analytical
(Eqn. 1) and experimental results are well within 1-percent for the first four detected
modes. These differences can be attributed to variations in geometry described above .
Note that the experimental frequencies are compared to those of a perfect spherical shell .
The frequencies lie on the lower (primarily bending) branch, and correspond to n=2, 3, 4,
and 6, respectively . The first mode, n=1, is the rigid-body mode of zero frequency . The
mode n=5 was not extracted .

Table 1 : Comparison of Averaged Modal Results [10] with Axisymmetric Theor y

Mode Mean Exp. Analytical Percent Difference
n=2, LOWER 5088 5078 0.20
n=3, LOWER 6028 6005 0.38
n=4, LOWER 6379 6378 0.02
n=6, LOWER 6680 6729 0.73

3. NON-AXISYMMETRIC MODES OF VIBRATION

An example of degenerate, non-axisymmetric modes (n=5, lower branch) for a perfect
spherical shell is shown in Figure 4 . Note that there are 2n+1 = 11 mode shapes in this
case, one axisymmetric and ten non-axisymmetric, all with the same natural frequency .
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Figure 4 . Degenerate Non-Axisymmetric Modes for n = 5

As discussed above, the spherical shells tested in [9, 10] contain both geometrical and
material imperfections. Because of the low level of excitation in the modal tests
performed on the shells, material imperfections will play little role, as the elastic
properties will vary little within a given shell, and from shell to shell . However,
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variations in geometry (i .e, thickness and radius) could potentially be significant, as they
could trigger the splitting of modal frequencies discussed above .

Results presented for axisymmetric modes of vibration in Section 2 are based upon
averages over all spherical shells tested, as reported in [10] . The result is that the non-
axisymmetric modes are effectively removed by the averaging process . In order to
directly observe the presence of the non-axisymmetric modes, a single marine float from
the group originally tested in [10] was selected for further evaluation . This shell, No. 17,
had earlier been subjected to the accelerometer modal testing during the test series
described in [10], and these data were made available to the authors for the non-
axisymmetric mode investigation reported herein. Also, the geometry of the shell had . not
been previously measured, which would involve destruction of the shell, so it was
available for further investigation using the dynamic holography method described later
in this paper .

In the following sub-sections, results from fu rther investigation of the Shell No. 17 ,
accelerometer modal data, additional testing of the same float using dynamic holography
(PRISM Methodology), physical measurements performed on Shell No . 17, and finite-
element modeling of this shell, including the variations in geometry (thickness and radius
as a function of the meridional coordinate) are presented .

3 .1 Acce lerometer Modal Results for F loat No. 1 7

The Eigensystem Realization Algorithm was used to convert time-domain data obtained
from the authors of [10] to modal frequencies . Results are shown for one accelerometer
mounted on Shell 17 in Figure 5 .
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FREQUENCIES FROM ACCELEROMETER NO . 2 DATA - FLOAT
NO . 1 7
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Figure 5 . Frequencies from Accelerometer No . 2 Data - Float No. 17

3.2 Dynamic Holography Measurements

Whole-field vibration measurements were obtained using the PRISM holographic
methodology [11] . This non-contact method produces a real-time, full image of the
spherical shell, with fringes indicating the mode shapes . By exciting the spherical shell
with a single-frequency piezoelectric driver, a frequency sweep in the range of interest (in
this case < SOOOHz to 7000 Hz) is performed, and the image of the amplified mode shape
at resonance appears . Both resonant natural frequencies and associated mode shapes are
therefore obtained directly .

Using this methodology on Shell No. 17 in the frequency range given above, the resonant
frequencies shown in Figure 6 were obtained .

10



SHELL FREQUENCIES OBSERVED WITH PRISM TECHNIQUE -
FLOAT NO . 1 7
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Figure 6. Resonant Frequencies Obtained on She ll No. 1 7 Using PRISM Who le
Fie ld Technique.

As an illustration of mode shapes obtained from this technique, images of Shell No . 17
without excitation and at an excitation frequency of 5093 Hz are shown in Figures 7 and
8, respectively . Dark fringes denote displacement normal to the plane of the image .
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3.3 Measured Variations in the Geometry of Shell No. 17

Next, geometric measurements of Shell 17 were taken to examine its deviation from a
perfect sphere . The measurement procedures were similar to that presented in [9], except
that initial external physical measurements of the float were taken before cutting to
determine shape changes as a result of the cutting process and subsequent relief of weld
residual stresses. Briefly, the shell was cut in half in a plane perpendicular to the girth
weld . A coordinate measuring machine was then utilized to measure the resulting two
hemispheres . Each of the hemispheres was measured along three meridians, located 45-
degrees apart . These contour lines were measured at one-degree meridional increments,
on both sides of the hemisphere . The thickness was then determined as the distance
between the inner and outer point ; and the radius was determined as the average of inner
and outer points . For display purposes, each meridional contour was divided in half ; and
the thickness and radius were displayed as a function of the meridional angle, with 0 = 0
at the weld location and 8 = 90-degrees at the pole .

3.4 Finite Element Modal Calculation s

With the measured geometric information, Finite Element calculations of normal mode
frequencies were performed for Float No . 17. Three cases were examined :

1 . Ideal Spherical Shell - Full shell mode l
2. Variation in (average) thickness as a function of the meridional coordinate
3 . Variation in both average thickness and average radius as a function of the

meridional coordinate

The first six modes extracted for each case correspond to the three rigid-body
translational and rotational degrees of freedom at zero frequency . The next five modes
(7-12) are shown in Table 2 and correspond to the theoretical n=2 lower branch (See Eqn .
1) . It can be seen that Case 1 is in excellent agreement with theory, and that negligible
splitting occurs . Case 2 exhibits significant splitting of modal frequencies, and case 3 has
significantly greater splitting, as expected .

Tab le 2:N=2 Lower Bra nch Results

Theory Mode No . FE 1 FE 2 FE 3
5078 7 5079.7 5058.0 4911 . 3
5078 8 5079.9 5058.7 4911 . 8
5078 9 5079.9 5072.2 5025 . 7
5078 10 5080.0 5078.7 5054. 4
5078 11 5080.1 5079.2 5055.1
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All modes extracted up to 6900 Hz are shown for the three cases in Figs . 9-11,
respectively .
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Figure 9 : Finite Element Simulations for Nominal Thickness and Radiu s
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Figure 11 : Finite E lement Simulations Including Meridional Variation s in Both
Radiu s and Thickness

4 . COMPARISONS OF RESULTS

Comparisons of the results specific to spherical shell No . 17 for n = 2 are shown in Fig .
12, where it is seen that excellent agreement is found between the PRISM whole-field
method and the ERA results from the Accelerometer records .
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Figure 12: Comparison of extractedmodal frequencies from ERA, PRISM, and
FEM, n=2

5. CONCLUSION S

Correlations of recorded natural frequencies of complete, free spherical shells are
performed with both theoretical results and finite element simulations . Comparisons of
the first few axisymmetric modes are good. An investigation of the non-axisymmetric
modes for the case of an imperfect spherical shell reveals the presence of these non-
axisymmetric modes because of the observed frequency splitting . Limited results on
mode shape are presented, both from calculations and from the whole-field experiments
using the PRISM dynamic holography method performed on one spherical shell with
imperfections .
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